Synthesis of New Transition Metal Carbene Complexes from π-Sulfurane Compounds: Reaction of 10-S-3 Tetraazapentalene Derivatives with $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$ and $\mathbf{R h C l}\left(\mathbf{P P h}_{3}\right)_{3}$

Noboru Matsumura,* Jun-ichi Kawano,
Noriki Fukunishi, and Hiroo Inoue
Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture

Sakai, Osaka 593, Japan

Masanori Yasui and Fujiko Iwasaki

Department of Applied Physics and Chemistry The University of Electro-Communications Chofu-shi, Tokyo 182, Japan Received November 7, 1994

Since the discovery of an unusual structure of trithiapentalene ${ }^{1}$ which is sometimes refered to as "no bond resonance", the chemistry of π-hypervalent heterocyclic systems has been a subject of considerable interest. A number of π-electron systems containing a 10-S-3 framework have been prepared, ${ }^{2}$ and their structures and reactivities have been investigated. ${ }^{2,3}$ However, little is known about the reactivity of the equatorial bonds ($\mathrm{S}^{\mathrm{IV}}=\mathrm{C}$) of $1,6,6 \mathrm{a}$-trithia $\left(6 \mathrm{a}-\mathrm{S}^{\text {IV }}\right.$) pentalenes and their analogs. Recently, we reported the synthesis and reactivity of $10-\mathrm{S}-3$ tetraazapentalene derivatives, 2,3-disubstituted 6,7-dihydro-5H-2a-thia $\left(2 \mathrm{a}-\mathrm{S}^{\mathrm{VV}}\right)$-2,3,4a, 7 a -tetraazacyclopent $[c d]$ indene-1,4($2 \mathrm{H}, 3 \mathrm{H}$)dithiones ($\mathbf{1 a - d}$). ${ }^{4,5}$ These compounds underwent unique reactions due to the nature of hypervalent sulfur. For example, the reaction of 1 a with NaBH_{4} gave the ring-opening compound 1,3-bis((methylthio)carbamoyl)perhydropyrimidine in good yield with release of the hypervalent sulfur. ${ }^{6}$ This reaction was the first example of the cleavage of an equatorial bond ($\mathbf{S}^{\mathrm{IV}}=\mathrm{C}$) in π-sulfurane compounds and indicated that the carbon atom of the $S^{I V}=C(7 b)$ bond of 1a has an electrophilic nature. The electrophilic nature of the 7 b carbon atom was also supported by the MNDO calculation. ${ }^{7}$

We now report the conversion of 10-S-3 tetraazapentalene derivatives into their Pd and Rh carbene complexes by reaction with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$. When 1a was treated with 1

[^0]
Scheme 1^{a}

1a-d

${ }^{a} \mathbf{a}, \mathrm{R}=\mathrm{CH}_{3} ; \mathbf{b}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathbf{c}, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathbf{d}, \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$.
Table 1. Reactions of 1 with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{a}$

$\begin{aligned} & \text { en- } \\ & \text { try } \end{aligned}$	tetraazapentalene (R)	complex	$\underset{\mathrm{h}}{\text { time }}$	solvent	product (yield/ $\%{ }^{b}$)
1	1a (Me)	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	48	$\mathrm{C}_{6} \mathrm{H}_{6}$	2a (23), 3a (39)
2	1b (Et)	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	48	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathbf{2 b}(-){ }^{d} \mathbf{d b}$ (55)
3	1c (p - $\mathrm{ClC}_{6} \mathrm{H}_{4}$)	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	48	$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {c }}$	2c (0), 3d (91)
4	1d ($p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$)	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	48	$\mathrm{C}_{6} \mathrm{H}_{6}$	2d (0), 3d (98)
5	1a (Me)	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	72	$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4a (94), 5a (0)
6	1b (Et)	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	72	$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4b (38), 5b (-)
7	1c (p - $\mathrm{ClC}_{6} \mathrm{H}_{4}$)	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	72	$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4c (0), 5c (99)
8	1d ($p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$)	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	72	$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4d (0), 5d (86)

[^1] isolated.
equiv of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in degassed benzene at room temperature for 48 h (Scheme 1), new Pd(II) carbene complexes 2a, Pd$\left[\mathrm{CN}\left(\mathrm{S}=\mathrm{CNCH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NC}(\mathrm{S})=\mathrm{NCH}_{3}\right]\left(\mathrm{PPh}_{3}\right)$, and 3a, $\operatorname{Pd}\left[\mathrm{CN}\left(\mathrm{C}(\mathrm{S})=\mathrm{NCH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NC}(\mathrm{S})=\mathrm{NCH}_{3}\right]\left(\mathrm{PPh}_{3}\right)$, were obtained as yellowish solids in 23 and 39% yields, respectively, accompanying the formation of triphenylphosphine sulfide $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}\right)$ in the same amount as that of the carbene complexes. The other tetraazapentalene derivatives ($\mathbf{1 b} \mathbf{b} \mathbf{d}$) reacted similarly with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give $\mathbf{3 b} \mathbf{- d}$. The results are shown in Table 1. The structure of $3 a^{8}$ was determined by X-ray crystallographic analysis. Figure 1 shows an ORTEP drawing of 3a. The Pd atom has a square planar-coordinated structure surrounded by two sulfur ligands, one phosphorus ligand, and one carbene ligand. The bond length of the $\mathrm{C}(1)-\mathrm{Pd}$ bond is 2.005 \AA, similar to the bond length of the $\mathrm{C}-\mathrm{Pd}$ bond of other $\mathrm{Pd}(\mathrm{II})$ carbene complexes. ${ }^{10}$ The configuration of the two methyl groups attached to the imino nitrogens of 3 a is syn to the $\mathrm{S}-\mathrm{C}$ bond. Complex 3a was very stable in organic solvents under air atmosphere. The structure of $2 a^{11}$ was determined by comparison of its spectral data with those of 3a. Complex 2a is stable to air in solid state but unstable in organic solvents at room temperature. In dichloromethane and benzene, 2a changed to 3a by an intramolecular ligand exchange. This ligand exchange reaction was followed by measuring the ${ }^{1} \mathrm{H}$ NMR spectrum of 2a at several different times. Complex 2a was completely converted into 3 a after 15 days in benzene and 25
(7) Tomura, M. A Ph.D. dissertation. Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Japan, 1992, p 43. The sulfur atoms of the thiocarbonyl groups at the 1-and 4-positions of la have a large coefficient in the HOMO, and the carbon atom at the 7b-position, which bonded to the $\mathbf{S}^{\text {iv }}$ atom, has a large coefficient in the LUMO.
(8) X-ray data of 3a. ${ }^{17}$ Selected bond distances $(\AA): \operatorname{Pd}(1)-S(2), 2.293-$ (1); $\mathrm{Pd}(1)-\mathrm{S}(3), 2.281(1) ; \operatorname{Pd}(1)-\mathrm{C}(1), 2.005(5) ; \mathrm{Pd}(1)-\mathrm{P}(1), 2.332(1) ;$ $\mathrm{S}(3)-\mathrm{C}(3), 1.759(5) ; \mathrm{S}(2)-\mathrm{C}(2), 1.755(6) ; \mathrm{N}(2)-\mathrm{C}(1), 1.342(6) ; \mathrm{N}(2)-$ $\mathrm{C}(2), 1.430(5) ; \mathrm{N}(3)-\mathrm{C}(1), 1.336(4) ; \mathrm{N}(3)-\mathrm{C}(3), 1.417(6) ; \mathrm{N}(1)-\mathrm{C}(2)$, $1.265(7) ; \mathrm{N}(1)-\mathrm{C}(7), 1.467(7)$. Selected bond angles (deg): $\mathrm{S}(3)-\mathrm{Pd}-$ (1) $-\mathrm{S}(2), 169.24(5) ; S(3)-\mathrm{Pd}(1)-\mathrm{C}(1), 84.7(1) ; \mathrm{S}(3)-\mathrm{Pd}(1)-\mathrm{P}(1), 96.80-$ (4); $S(2)-P d(1)-C(1), 84.5(1) ; S(2)-P d(1)-P(1), 93.95(5)$.
(9) Johnson, C. K. ORTEPM. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
(10) Anderson, O. P.; Packard, A. B. Inorg. Chem. 1978, 17, 1333.

Figure 1. ORTEP drawing of 3a viewed on the pentalene framework. ${ }^{9}$ Non-hydrogen atoms are represented as a themal ellipsoid of 50% probability.

Scheme $\mathbf{2}^{a}$

${ }^{a} \mathbf{a}, \mathrm{R}=\mathrm{CH}_{3} ; \mathbf{b}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathbf{c}, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathbf{d}, \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$.
days in $\mathrm{CDCl}_{3} .{ }^{12}$ In general, the carbene complexes having two sulfur ligands are more stable than the carbene complexes having nitrogen and sulfur ligands. Thus, when 1b was treated with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathbf{3 b}$ was obtained as a sole isolable product in moderate yield with recovery of 1 b . The reaction of 1 c and $\mathbf{1 d}^{13}$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ at room temperature for 48 h gave 3 c and 3 d in high yields, respectively (Table 1). The formation of $\mathbf{3 a - d}$ in preference to $\mathbf{2 a}-\mathbf{d}$ suggests that a severe steric repulsion exists between the substituents in the 2 and 3 positions of the latter compounds. The same method was applied to the synthesis of $\mathrm{Rh}(\mathrm{III})$ carbene complexes ${ }^{14}$ (Scheme 2). The reaction of $\mathbf{1 a}$ with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ in $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ at room temperature for 72 h gave the unsymmetrical $\mathrm{Rh}(\mathrm{III})$ carbene complex 4a, $\mathrm{RhCl}\left[\mathrm{CN}\left(\mathrm{S}=\mathrm{CNCH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NC}\right.$ $\left.(\mathrm{S})=\mathrm{NCH}_{3}\right]\left(\mathrm{PPh}_{3}\right)_{2}$, in 94% yield. In this reaction, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}$ was produced in an amount equivalent to that of 4 a . The reaction of $\mathbf{1 b}$ with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ under similar conditions gave $\mathbf{4 b}$ in
(11) 2a: $\mathrm{mp} 260-261^{\circ} \mathrm{C}$; FT-IR (KBr, cm^{-1}) 1611, 1535, 1487, 1435, $1398,1309,1098,745,694 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05$ (quint, $\left.2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.93\left(\mathrm{~d}, 3 \mathrm{H}, J(\mathrm{PH})=1.8 \mathrm{~Hz}, \mathrm{PPdNCH}_{3}\right)$, $3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.73\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $4.19(\mathrm{t}, 2 \mathrm{H}$, $\left.J=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 7.40-7.60(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}) ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ $\lambda_{\max }(\epsilon) 262.0(26300), 356 \mathrm{~nm}(2700)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{PPd}$: C, $52.30 ; \mathrm{H}, 4.56$; N, 9.38. Found: C, $52.38 ; \mathrm{H}, 4.49$; N, 9.23. 3a: mp $265-266^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $1605,1518,1435,1396,1348,743,692$; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97$ (quint, $2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.17\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right), 3.85\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $7.40-7.60(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}) ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }(\epsilon) 244(\mathrm{sh}, 26700), 355.5$ nm (2200). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{2} 7 \mathrm{~N}_{4} \mathrm{~S}_{2}$ PPd: C, $52.27 ; \mathrm{H}, 4.56 ; \mathrm{N}, 9.38$. Found: C, $52.30 ; \mathrm{H}, 4.47$; $\mathrm{N}, 9.42$.
(12) The signals at $2.93\left(\mathrm{CH}_{3} \mathrm{NCS}-\right)$ and $3.10 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{C}\right)$ of 2 a decreased as time elapsed, and the singlet at $3.17 \mathrm{ppm}\left(=\mathrm{NCH}_{3}\right)$ of 3a appeared as time elapsed. Finally, the spectrum of 2a changed to the spectrum of 3 a .
(13) Compound $1 \mathbf{d}$ was prepared according to a method similar to that for the synthesis of 1 c (see ref 5 h): ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.39$ (quint, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.47(\mathrm{t}$, $4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} \mathrm{N}$), $6.91-7.29(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$.
(14) (a) Cowie, M.; Ibers, J. A. Inorg. Chem. 1976, 15,552 . (b) Itoh, K.; Matsuda, I.; Ueda, F.; Ishii, Y.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2118.

Figure 2. ORTEP drawing of 4 a viewed on the pentalene framework. ${ }^{9}$ Non-hydrogen atoms are represented as a thermal ellipsoid of 50% probability.
low yield. The results are given in Table 1. The low reactivity of $\mathbf{1 b}$ may be due to a steric repulsion between two ethyl groups, attached to the pentalene ring, and the $\mathrm{Ph}_{3} \mathrm{P}$ groups of $\mathrm{RhCl}-$ $\left(\mathrm{PPh}_{3}\right)_{3}$ at the transition state (see ref 5a). The structure of the complex 4a was determined from the spectral data ${ }^{15}$ and X-ray crystallographic analysis. ${ }^{16}$ Figure 2 shows an ORTEP drawing of the molecular structure of $\mathbf{4 a}$. The X-ray crystallographic analysis showed the following structural features for $\mathbf{4 a}$. (1) The Rh atom is octahedrally coordinated. (2) The six coordinated sites are occupied by one chloro ligand, two trans phosphine ligands, and one tridentate ligand formed by release of a hypervalent sulfur. The $\mathrm{C}(1)-\mathrm{Rh}$ bond length is $1.937 \AA$, very similar to that of known Rh(III) carbene complexes. ${ }^{14}$ This carbene complex is stable in refluxed benzene under air atmosphere. The reaction of $\mathbf{1 c}$ and $\mathbf{1 d}$ with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ gave the carbene complexes $5 \mathrm{c}, \mathrm{RhCl}\left[\mathrm{CN}\left(\mathrm{C}(\mathrm{S})=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right) \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}(\mathrm{S})=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right)\right]\left(\mathrm{PPh}_{3}\right)_{2}$, and 5d, $\mathrm{RhCl}[\stackrel{\mathrm{CN}}{ }$ $\left.\left(\mathrm{C}(\mathrm{S})=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}(\mathrm{S})=\mathrm{N}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}\right)\right]-$ $\left(\mathrm{PPh}_{3}\right)_{2}$, in 99 and 86% yields, respectively, without the formation of 4 c and 4 d (Table 1).

Acknowledgment. This work was supported in part by Grants-inAid for Scientific Research (No. 03214103 and 06640696) from the Ministry of Science, Culture and Education of Japan, which is gratefully acknowledged.

Supplementary Material Available: Spectroscopic and analytical data for complexes $\mathbf{2 a}, \mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}, \mathbf{3 d}, \mathbf{4 a}, \mathbf{4 b}, \mathbf{5 c}$, and 5d; ORTEP drawing of $\mathbf{3 a}$ and $4 \mathbf{a}$; and tables of crystal data and experimental details and selected bond lengths and angles (6 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS , and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA943623J

[^2]
[^0]: (1) (a) Arndt, F.; Nachtwey, P.; Pusch, J. Chem. Ber. 1925, 58, 1633. (b) Bezzi, S.; Mammi, M.; Carbuglio, C. Nature (London) 1958, 182, 247. (c) Pfister-Guillouzo, G. Bull. Soc. Chim. Fr. 1958, 1316.
 (2) (a) Klingsberg, E. J. Org. Chem. 1968, 33, 2915. (b) Derocque, J.L.; Perrier, M.; Vialle, J. Bull. Soc. Chim. Fr. 1968, 2062. (c) Reid, D. H.; Symon, J. D. J. Chem. Soc., Chem. Commun. 1969, 1314. (d) Lozac'h, N. Adv. Hetrocycl. Chem. 1971, 13, 161. (e) Reid, D. H. J. Chem. Soc. C 1971, 3187. (f) Reid, D. H.; Webster, R. G. J. Chem. Soc. C 1972, 1283. (g) Beer, R. J. S.; Waylor, A. Tetrahedron Lett. 1973, 2989. (h) Ingram, A. S.; Reid, D. H.; Symon, J. D. J. Chem. Soc., Perkin Trans. 1 1974, 242. (i) Gleiter, R.; Gygax, R. Top. Curr. Chem. 1976, 63, 49. (j) Goerdeler, J.; Hohage, H.; Zeid, I. Chem. Ber. 1976, 109, 3108. (k) Gleiter, R.; Spanget-Larsen, J. Top. Curr. Chem. 1979, 86, 139. (1) Yamamoto, Y.; Akiba, K. Hetrocycles 1979, 13, 297. (m) Yokoyama, M.; Shiraishi, T.; Hatanaka, H.; Ogata, K. J. Chem. Soc., Chem. Commun. 1985, 1704. (n) Michael, J. P.; Reid, D. H.; Rose, B. G.; Speirs, R. A. J. Chem. Soc., Chem. Commun. 1988, 1494.
 (3) (a) Musher, J. I. Angew. Chem., Int. Ed. Engl. 1969, 8, 54. (b) Iwasaki, F.; Akiba, K. Bull. Chem. Soc. Jpn. 1984, 57, 2581. (c) Akiba, K.; Kashiwagi, K.; Ohyama, Y.; Yamamoto.; Ohkata, K. J. Am. Chem. Soc. 1985, 107, 2721. (d) Hayes, R. A.; Martin, J. C. In Organic Sulfur Chemistry: Theoretical and Experimental Advances; Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier Scientific Publishing: Amsterdam, 1985; p 408. (e) Kucsman, A.; Kapovits, I. In Organic Sulfur Chemistry: Theoretical and Experimental Advances; Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier Scientific Publishing: Amsterdam, 1985; p 191. (f) Akiba, K.; Ohsugi, M.; Iwasaki, H.; Ohkata, K. J. Am. Chem. Soc. 1988, 110, 5576.
 (4) Matsumura, N.; Tomura, M.; Mori, O.; Tsuchiya, Y.; Yoneda, S.; Toriumi, K. Bull. Chem. Soc. Jpn. 1988, 6I, 2419.
 (5) (a) Matsumura, N.; Tomura, M.; Yoneda, S.; Toriumi, K. Chem. Lett. 1986, 1047. (b) Matsumura, N.; Tomura, M.; Mori, O.; Takamura, Y.; Yoneda, S. Tetrahedron Lett. 1989, 30, 2259. (c) Tomura, M.; Chikusa, M.; Inazu, K.; Ito, A.; Matsumura, N.; Inoue, H. Synthesis 1991, 457 and references cited therein. (d) Matsumura, N.; Hirase, R.; Inoue, H. Tetrahedron Lett. 1994, 35, 899 and references cited therein.
 (6) Matsumura, N.; Tomura, M.; Mori, O.; Ukawa, M.; Yoneda, S. Hetrocycles 1987, 26, 3097.

[^1]: ${ }^{a}$ All reactions were carried out at room temperature in a sealed tube. Molar ratio 1 :complex $=1: 1 .{ }^{b}$ Isolated yields based on 1a-d. ${ }^{c}$ In $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1). ${ }^{d}$ The dash signifies that the product could not be

[^2]: (15) 4a: FT-IR (KBr, cm^{-1}) 1605, 1520, 1504, 1435, 1398, 1344, 1309, $1164,1100,1062,748,696,654,522,493 ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.59$ (quint, $2 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.49$ $\left(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.02\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{NCH}_{3}\right), 3.71(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 7.30-7.75\left(\mathrm{~m}, 30 \mathrm{H}, 2 \times \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$; UV $\left(\mathrm{CH}_{3}-\right.$ $\mathrm{CN}) \lambda_{\text {max }}(\epsilon) 355(9600), 272 \mathrm{~nm}(23300)$.
 (16) X-ray data of 4a. ${ }^{17}$ Selected bond distances $(\AA): \operatorname{Rh}(1)-\mathrm{S}(2)$, $2.344(1) ; \operatorname{Rh}(1)-\mathrm{C}(1), 1.937(5) ; \operatorname{Rh}(1)-\mathrm{P}(1), 2.388(2) ; \mathrm{Rh}(1)-\mathrm{P}(2), 2.364-$ (2); $\operatorname{Rh}(1)-\mathrm{N}(5), 2.073(4) ; \operatorname{Rh}(1)-\mathrm{Cl}(1), 2.446(1) ; \mathrm{S}(2)-\mathrm{C}(2), 1.753(6)$; $\mathrm{N}(2)-\mathrm{C}(1), 1.331(7) ; \mathrm{N}(2)-\mathrm{C}(2), 1.427(7) ; \mathrm{N}(5)-\mathrm{C}(3), 1.312(8) ; \mathrm{N}(3)-$ $\mathrm{C}(3), 1.426(7)$. Selected bond angles (deg); $\mathrm{S}(2)-\mathrm{Rh}(1)-\mathrm{C}(1), 83.1(2)$; $\mathrm{S}(2)-\mathrm{Rh}(1)-\mathrm{P}(1), 87.90(6) ; \mathrm{S}(2)-\mathrm{Rh}(1)-\mathrm{P}(2), 90.25(6) ; \mathrm{N}(5)-\mathrm{Rh}(1)-$ $\mathrm{C}(1), 78.8(2) ; \mathrm{N}(5)-\mathrm{Rh}(1)-\mathrm{P}(1), 90.7(2) ; \mathrm{N}(5)-\mathrm{Rh}(1)-\mathrm{P}(2), 92.8(2) ; \mathrm{Cl}-$ (1) $-\operatorname{Rh}(1)-\mathrm{S}(2), 101.16(6) ; \mathrm{Cl}(1)-\operatorname{Rh}(1)-\mathrm{N}(5), 97.0(2) ; \mathrm{Cl}(1)-\mathrm{Rh}(1)-$ C(1), 174.7(2).
 (17) There are several interesting points in these structures, and details of X -ray structure will be published elsewhere together with related compounds by M. Yasui, F. Iwasaki, and N. Matsumura.

